Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 951
Filtrar
1.
J Appl Toxicol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563354

RESUMO

Although measurements of blood triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) levels in rodent toxicity studies are useful for detection of antithyroid substances, assays for these measurements are expensive and can show high variability depending on blood sampling conditions. To develop more efficient methods for detecting thyroid disruptors, we compared histopathological and immunohistochemical findings in the thyroid and pituitary glands with blood hormone levels. Six-week-old male and female Sprague-Dawley rats (five rats per group) were treated with multiple doses of the thyroid peroxidase inhibitors propylthiouracil (PTU) and methimazole by gavage for 28 days. Significant decreases in serum T3 and T4 and increases in TSH were observed in the ≥1 mg/kg PTU and ≥3 mg/kg methimazole groups. An increase in TSH was also detected in male rats in the 0.3 mg/kg PTU group. Histopathological and immunohistochemical analyses revealed that follicular cell hypertrophy and decreased T4 and T3 expressions in the thyroid gland were induced at doses lower than doses at which significant changes in serum hormone levels were observed, suggesting that these findings may be more sensitive than blood hormone levels. Significant increases in thyroid weights, Ki67-positive thyroid follicular cell counts, and TSH-positive areas in the pituitary gland were detected at doses comparable with those at which changes in serum T4 and TSH levels were observed, indicating that these parameters may also be useful for evaluation of antithyroid effects. Combining these parameters may be effective for detecting antithyroid substances without relying on hormone measurements.

2.
Diabetol Metab Syndr ; 16(1): 82, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576015

RESUMO

BACKGROUND: In the present systematic review and meta-analysis, the association of maternal exposure to the endocrine disrupting chemicals (EDCs) with cardio-metabolic risk factors in children during childhood for the first time. METHOD: The PubMed, Scopus, EMBASE, and Web of Science databases were systematically searched, up to Feb 2023. In total 30 cohort studies had our inclusion criteria. A random-effects model was used for the variables that had considerable heterogeneity between studies. The Newcastle-Ottawa Scale (NOS) tool was used to classify the quality score of studies. All statistical analyses were conducted using Stata 14 and P-value < 0.05 considered as a significant level. RESULTS: In the meta-analysis, maternal exposure to the EDCs was weakly associated with higher SBP (Fisher_Z: 0.06, CI: 0.04, 0.08), BMI (Fisher_Z: 0.07, CI: 0.06, 0.08), and WC (Fisher_Z: 0.06, CI: 0.03, 0.08) z-scores in children. A significant linear association was found between maternal exposure to the bisphenol-A and pesticides with BMI and WC z-score in children (p < 0.001). Subgroup analysis showed significant linear association of BPA and pesticides, in the urine samples of mothers at the first trimester of pregnancy, with BMI and WC z-score in children from 2-8 years (p < 0.05). CONCLUSION: Prenatal exposure to the EDCs in the uterine period could increase the risk of obesity in children. Maternal exposure to bisphenol-A and pesticides showed the strongest association with the obesity, especially visceral form, in the next generation.

3.
Chem Biol Interact ; : 111011, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653352

RESUMO

Immune homeostasis is key to guarantee that the immune system can elicit effector functions against pathogens and at the same time raise tolerance towards other antigens. A disturbance of this delicate balance may underlie or at least trigger pathologies. Endocrine disrupting chemicals (EDCs) are increasingly recognized as risk factors for immune dysregulation. However, the immunotoxic potential of specific EDCs and their mixtures is still poorly understood. Thus, we aimed to investigate the effect of bisphenol A (BPA) and benzophenone-3 (BP-3), alone and in combination, on in vitro differentiation of T helper (TH)17 cells and regulatory T (Treg) cells. Naïve T cells were isolated from mouse lymphoid tissues and differentiated into the respective TH population in the presence of 0.001-10 µM BP-3 and/or 0.01-100 µM BPA. Cell viability, proliferation and the expression of TH lineage specific transcription factors and cytokines was measured by flow cytometry and CBA/ELISA. Moreover, the transcription of hormone receptors as direct targets of EDCs was quantified by RT-PCR. We found that the highest BPA concentration adversely affected TH cell viability and proliferation. Moreover, the general differentiation potential of both TH populations was not altered in the presence of both EDCs. However, EDC exposure modulated the emergence of TH17 and Treg cell intermediate states. While BPA and BP-3 promoted the development of TH1-like TH17 cells under TH17-differentiating conditions, TH2-like Treg cells occurred under Treg polarization. Interestingly, differential effects could be observed in mixtures of the two tested compounds compared with the individual compounds. Notably, estrogen receptor ß expression was decreased under TH17-differentiating conditions in the presence of BPA and BP-3 as mixture. In conclusion, our study provides solid evidence for both, the immune disruptive potential and the existence of cumulative effects of real nature EDC mixtures on T cell in vitro differentiation.

4.
J Endocrinol Invest ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637430

RESUMO

PURPOSE: Endocrine disruptors exert a plethora of effects in endocrine tissues, from altered function to carcinogenesis. Given its lipophilic nature, the adrenal cortex represents an ideal target for endocrine disruptors and thus, possibly, xenobiotic-induced adrenocortical dysfunction. However, there is no clear understanding of the effect of endocrine disruptors on adrenal steroidogenesis, in particular as regards the aryl hydrocarbon receptor (AHR) pathway, one of the key mediators. METHODS: The present review recapitulates available evidence on the effects of AHR ligands on adrenal steroidogenesis, with focus on cortisol secretion. RESULTS: Short-term exposure to AHR ligands most often induced a stress-like corticosteroid response followed by decreased responsiveness to stressors with long-term exposure. This was observed in several experimental models across species as well as in animals and humans in real-life settings. Prenatal exposure led to different effects according to sex of the offspring, as observed in murine models and in children from mothers in several countries. In vitro findings proved highly dependent on the experimental setting, with reduced cortisol response and steroidogenic enzyme synthesis mostly observed in fish and increased cortisol synthesis and secretion observed in murine and human adrenal cell lines. Of note, no AHR-binding element was detected in steroidogenic enzyme promoters, suggesting the involvement of additional factors. CONCLUSION: Our review provides evidence for the impact of AHR ligands on adrenocortical function and indicates further avenues of research to better clarify its effects.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38607492

RESUMO

Detergents are highly produced pollutants with environmental problems like foam generation and toxic effects in biota. Nonylphenol ethoxylates (NPEs) are efficient, economical, and versatile surfactants, used in detergents for more than 40 years due to their detergency capacity. In the environment, NPE biodegrades into the metabolite nonylphenol (NP), classified as an endocrine disruptor. The identification and quantification of 4-NP in a designed detergent and 30 commercially available detergents were performed to prove the degradation of NPE into 4-NP during storage time. This investigation introduces the first evidence of NPE degradation during storage in commercially available detergents, demonstrating a novel exposure pathway in humans that has not been explored before, representing potential human health risks. Therefore, simple, easy, low-cost, and available approaches to remove and substitute NP is paramount. Alkyl polyglucoside (APG) was assessed as a substitute, and the feasibility of this substitution was proven according to physical and chemical properties, cleaning performance, and antimicrobial properties. NPE substitution in detergents is demonstrated as a viable strategy to minimize exposure risks in humans and the environment.

6.
Redox Rep ; 29(1): 2341537, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629506

RESUMO

BACKGROUND: Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS: Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS: Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1ß and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION: In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.


Assuntos
Antioxidantes , NF-kappa B , Ratos , Animais , Masculino , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Zinco/farmacologia , Acrilamida/toxicidade , Ratos Wistar , Sêmen/metabolismo , Estresse Oxidativo , Transdução de Sinais , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
7.
Environ Sci Technol ; 58(11): 4859-4871, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441001

RESUMO

Plastics are complex chemical mixtures of polymers and various intentionally and nonintentionally added substances. Despite the well-established links between certain plastic chemicals (bisphenols and phthalates) and adverse health effects, the composition and toxicity of real-world mixtures of plastic chemicals are not well understood. To assess both, we analyzed the chemicals from 36 plastic food contact articles from five countries using nontarget high-resolution mass spectrometry and reporter-gene assays for four nuclear receptors that represent key components of the endocrine and metabolic system. We found that chemicals activating the pregnane X receptor (PXR), peroxisome proliferator receptor γ (PPARγ), estrogen receptor α (ERα), and inhibiting the androgen receptor (AR) are prevalent in plastic packaging. We detected up to 9936 chemical features in a single product and found that each product had a rather unique chemical fingerprint. To tackle this chemical complexity, we used stepwise partial least-squares regressions and prioritized and tentatively identified the chemical features associated with receptor activity. Our findings demonstrate that most plastic food packaging contains endocrine- and metabolism-disrupting chemicals. Since samples with fewer chemical features induce less toxicity, chemical simplification is key to producing safer plastic packaging.


Assuntos
Disruptores Endócrinos , Embalagem de Alimentos , Polímeros , Disruptores Endócrinos/química , Disruptores Endócrinos/farmacologia , Plásticos
8.
Environ Res ; 251(Pt 2): 118748, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522740

RESUMO

Bisphenols are emerging endocrine disrupting pollutant, and several studies have reported that they are already ubiquitous in various environmental matrices and intend to deposit in sediment. The primary sources of bisphenols are river and sewage discharge. Sea cucumber (Apostichopus japonicus), a typical deposit feeder, is one of the most important commercial marine species in Aisa. However, the effects of the bisphenol A (BPA) and its analogues bisphenol AF (BPAF) on sea cucumber was unclear. In this study, we carried out field survey in major sea cucumber farming areas in northern China, with the aim of determining which bisphenol analogue is the major bisphenol contamination in this aquaculture area. The results showed that the presence of BPAF was detected in four sampling sites (Dalian, Tangshan, Laizhou, and Longpan). The mean level of BPAF in Laizhou sediment samples was the highest which reached to 9.007 ± 4.702 µ g/kg. Among the seawater samples, the BPAF only have been detected in the samples collected at Longpan. (0.011 ± 0.003 µ g/L). Furthermore, we conducted an experiment to evaluate the single and combined toxicity of BPA and BPAF on sea cucumbers. The concentrations were informed by the findings based on the results of field research. (0.1, 1.0, and 10 µ g/L). After exposure, the body weight gain, and specific growth rate showed no significant changes (P > 0.05). We observed the histological alterations in respiratory tree of treated sea cucumbers including the fusion and detachment of lining epithelial tissue, and increase of lumen space. However, the catalase (CAT), malondialdehyde (MDA), and glutathione (GSH) activity was not significantly changed (P > 0.05). We evaluated the effects of BPA and BPAF through calculating the integrated biomarker response index (IBR), and the results indicated that the toxicity of combined treatment was higher than single treatment. Additionally, BPAF exposure to A. japonicus was more toxic than BPA.

9.
Toxics ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535916

RESUMO

Efforts are being made globally to improve the evaluation and understanding of endocrine-disrupting chemicals. Recognition of their impact on human health and the environment has stimulated attention and research in this field. Various stakeholders, including scientists, regulatory agencies, policymakers, and industry representatives, are collaborating to develop robust methodologies and guidelines for assessing these disruptors. A key aspect of these efforts is the development of standardized testing protocols and guidelines that aim to provide consistent and reliable methods for identifying and characterizing endocrine disruptors. When evaluating the potential endocrine-disrupting activity of chemicals, no single test is capable of detecting all relevant endocrine-disrupting agents. The test battery approach is designed to reduce the risk of false negative results for compounds with toxic potential. A weight-of-evidence approach is therefore necessary for endocrine disruptor evaluation. This approach considers various types of data from multiple sources, assessing the overall strength, consistency, and reliability of the evidence. OECD guidelines are highly regarded for their scientific rigor, transparency, and consensus-based development process. It is crucial to explore and develop new methodologies that can effectively evaluate the risks associated with potential endocrine disruptors. Integrating these methods into a comprehensive weight-of-evidence framework will enhance risk assessments and facilitate informed decisions regarding the regulation and management of these substances, ensuring the protection of human health and the environment from their adverse effects.

10.
Toxics ; 12(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535953

RESUMO

Recent events concerning jet fuel contamination of drinking water have shown that we need a better understanding of the effects of ingested jet fuel. To this end, a reproductive study with ingested jet fuel in rats was undertaken with relatively high concentrations of Jet Propellant (JP)-5 along with a human estrogen receptor activation in vitro assay using JP-5, JP-8, and an alternative jet fuel derived from the camelina plant referred to as HydroRenewable Jet (HRJ) fuel, to help evaluate potential effects of ingested jet fuel. The results of the in vivo study provide evidence that JP-5 can act as an endocrine disruptor, with specific observations including altered hormone levels with JP-5 exposure (significantly lower estradiol levels in male rats and significantly increased Dehydroepiandrosterone levels in females), and a decreased male/female offspring ratio. The in vitro hormone receptor activation assay indicated that JP-5 and JP-8 are capable of upregulating human estrogen receptor (ER) activity, while HRJ was not active in the ER assay. The jet fuels were not able to activate androgen or glucocorticoid receptors in further in vitro assays. These results infer potential endocrine disruption associated with JP-5, with activation of the estrogen receptor as one potential mechanism of action.

11.
Environ Toxicol Pharmacol ; 107: 104420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499263

RESUMO

Endocrine disruptors chemicals (EDCs) pose significant health risks, including cancer, behavioral disorders, and infertility. In this study, we employed the photoelectrocatalysis (PEC) technique with optimized tungsten oxide (WO3) nanostructures as a photoanode to degrade three diverse EDCs: methiocarb, dimethyl phthalate, and 4-tert-butylphenol. PEC degradation tests were carried out for individual contaminants and a mixture of them, assessing efficiency across different EDC families. Ultra High-Performance Liquid Chromatography and Mass Spectrometry was used to control the course of the experiments. For individual solutions, 4-tert-butylphenol and methiocarb were 100% degraded at 1 hour of PEC degradation. Among the tested EDCs, dimethyl phthalate showed the highest resistance to degradation when treated individually. However, when assessed in a mixture with the other EDCs, the degradation efficiency of dimethyl phthalate increased compared to its individual treatment. Furthermore, four degradation intermediates were identified for each contaminant. Finally, toxicity tests revealed that the initial solution was more toxic than the samples treated for all the contaminants tested, except for the phthalate.


Assuntos
Disruptores Endócrinos , Metiocarb , Fenóis , Ácidos Ftálicos , Humanos , Disruptores Endócrinos/toxicidade , Espectrometria de Massas em Tandem/métodos
12.
J Hazard Mater ; 469: 133935, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442602

RESUMO

Bisphenol A (BPA) and its various forms used as BPA alternatives in industries are recognized toxic compounds and antiandrogenic endocrine disruptors. These chemicals are widespread in the environment and frequently detected in biological samples. Concerns exist about their impact on hormones, disrupting natural biological processes in humans, together with their negative impacts on the environment and biotic life. This study aims to characterize the interaction between BPA analogs and the androgen receptor (AR) and the effect on the receptor's normal activity. To achieve this goal, molecular docking was conducted with BPA and its analogs and dihydrotestosterone (DHT) as a reference ligand. Four BPA analogs exhibited higher affinity (-10.2 to -8.7 kcal/mol) for AR compared to BPA (-8.6 kcal/mol), displaying distinct interaction patterns. Interestingly, DHT (-11.0 kcal/mol) shared a binding pattern with BPA. ADMET analysis of the top 10 compounds, followed by molecular dynamics simulations, revealed toxicity and dynamic behavior. Experimental studies demonstrated that only BPA disrupts DHT-induced AR dimerization, thereby affecting AR's function due to its binding nature. This similarity to DHT was observed during computational analysis. These findings emphasize the importance of targeted strategies to mitigate BPA toxicity, offering crucial insights for interventions in human health and environmental well-being.


Assuntos
Disruptores Endócrinos , Receptores Androgênicos , Humanos , Receptores Androgênicos/metabolismo , Disruptores Endócrinos/metabolismo , Simulação de Acoplamento Molecular , Fenóis/metabolismo , Di-Hidrotestosterona/farmacologia , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo
13.
Environ Geochem Health ; 46(3): 111, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466501

RESUMO

With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Metais Pesados , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Humanos , Água/análise , Águas Residuárias , Disruptores Endócrinos/análise , Metais Pesados/análise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
14.
Chemosphere ; 353: 141673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462176

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widespread across the environment and humans are unavoidably and constantly exposed to them. As lipophilic contaminants, these substances tend to accumulate in fatty tissues as adipose tissue and exposure to these endocrine disruptors has been associated with severe health hazards including prevalence and incidence of obesity. Previous studies have shown significantly higher concentrations of PAHs in adipose tissue compared to other human samples, such as urine and plasma, which are typically used for PAHs assessment. Therefore, conducting biomonitoring studies in adipose tissue is essential, although such studies are currently limited. In this study, the concentrations of 18 PAHs were measured in subcutaneous (scAT) and visceral adipose tissue (vAT) of 188 Portuguese obese females by high performance liquid chromatography (HPLC). The obtained results were then associated with the patient's data namely: 13 clinical, 4 social, and 42 biochemical parameters. Seventeen PAHs were present, at least, in one sample of both scAT and vAT, most of them with detection frequencies higher than 80%. Indeno [1,2,3-cd]pyrene (InP) was the only PAH never detected. Overall higher concentrations of PAHs were observed in scAT. Median concentrations of ∑PAHs were 32.2 ± 10.0 ng/g in scAT and 24.6 ± 10.0 ng/g in vAT. Thirty-six significant associations (7 with social, 18 with clinical, and 11 with biochemical parameters), including 21 Spearman's correlations were identified (12 positive and 9 negative correlations). Indicating the potential effects of PAHs on various parameters such as obesity evolution, body fat, number of adipocytes, total cholesterol, alkaline phosphatase, macrominerals, uric acid, sedimentation velocity, and luteinizing hormone. This study underscores the significance of biomonitoring PAH levels in adipose tissue and their potential effects on metabolic health. Further research is essential to fully comprehend the metabolic implications of PAHs in the human body and to develop strategies for obesity prevention and treatment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Humanos , Feminino , Hidrocarbonetos Policíclicos Aromáticos/análise , Bioacumulação , Tecido Adiposo/química , Obesidade , Hormônio Luteinizante , Monitoramento Ambiental
15.
J Endocrinol Invest ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522066

RESUMO

BACKGROUND: The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE: The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS: An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.

16.
J Bone Miner Metab ; 42(2): 242-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498197

RESUMO

INTRODUCTION: This study was to investigate the correlations between pyrethroid exposure and bone mineral density (BMD) and osteopenia. MATERIALS AND METHODS: This cross-sectional study included 1389 participants over 50 years of age drawn from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Survey (NHANES). Three pyrethroid metabolites, 3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (trans-DCCA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3PBA) were used as indicators of pyrethroid exposure. Low BMD was defined as T-score < - 1.0, including osteopenia. Weighted multivariable linear regression analysis or logistic regression analysis was utilized to evaluate the correlation between pyrethroid exposure and BMD and low BMD. Bayesian kernel machine regression (BKMR) model was utilized to analyze the correlation between pyrethroids mixed exposure and low BMD. RESULTS: There were 648 (48.41%) patients with low BMD. In individual pyrethroid metabolite analysis, both tertile 2 and tertile 3 of trans-DCCA were negatively related to total femur, femur neck, and total spine BMD [coefficient (ß) = - 0.041 to - 0.028; all P < 0.05]. Both tertile 2 and tertile 3 of 4-F-3PBA were negatively related to total femur BMD (P < 0.05). Only tertile 2 [odds ratio (OR) = 1.63; 95% CI = 1.07, 2.48] and tertile 3 (OR = 1.65; 95% CI = 1.10, 2.50) of trans-DCCA was correlated with an increased risk of low BMD. The BKMR analysis indicated that there was a positive tendency between mixed pyrethroids exposure and low BMD. CONCLUSION: In conclusion, pyrethroids exposure was negatively correlated with BMD levels, and the associations of pyrethroids with BMD and low BMD varied by specific pyrethroids, pyrethroid concentrations, and bone sites.


Assuntos
Benzoatos , Doenças Ósseas Metabólicas , Inseticidas , Éteres Fenílicos , Piretrinas , Adulto , Humanos , Pessoa de Meia-Idade , Piretrinas/efeitos adversos , Piretrinas/análise , Piretrinas/metabolismo , Inseticidas/efeitos adversos , Inseticidas/análise , Inseticidas/metabolismo , Inquéritos Nutricionais , Estudos Transversais , Densidade Óssea , Teorema de Bayes , Exposição Ambiental/efeitos adversos , Doenças Ósseas Metabólicas/induzido quimicamente , Doenças Ósseas Metabólicas/epidemiologia
17.
Toxicology ; 504: 153791, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555994

RESUMO

Bisphenol A (BPA) is a synthetic chemical widely used as a monomer for producing polycarbonate plastics. The present investigation employed an in-silico approach to identify BPA-responsive genes and comprehend the biological functions affected using in vitro studies. A Comparative Toxicogenomics Database search identified 29 BPA-responsive genes in cervical cancer (CC). Twenty-nine genes were screened using published datasets, and thirteen of those showed differential expression between normal and CC samples. Protein-Protein Interaction Networks (PPIN) analysis identified BIRC5, CASP8, CCND1, EGFR, FGFR3, MTOR, VEGFA, DOC2B, WNT5A, and YY1 as hub genes. KM-based survival analysis identified that CCND, EGFR, VEGFA, FGFR3, DOC2B, and YY1 might affect CC patient survival. SiHa and CaSki cell proliferation, migration, and invasion were all considerably accelerated by BPA exposure. Changes in cell morphology, remodeling of the actin cytoskeleton, increased number and length of filopodia, elevated intracellular reactive oxygen species and calcium, and lipid droplet accumulation were noted upon BPA exposure. BPA treatment upregulated the expression of epithelial to mesenchymal transition pathway members and enhanced the nuclear translocation of CTNNB1. We showed that the enhanced migration and nuclear translocation of CTNNB1 upon BPA exposure is a calcium-dependent process. The present study identified potential BPA-responsive genes and provided novel insights into the biological effects and mechanisms affected by BPA in CC. Our study raises concern over the use of BPA.

18.
Environ Pollut ; 348: 123816, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508369

RESUMO

The increase of plastic production together with the incipient reuse/recycling system has resulted in massive discards into the environment. This has facilitated the formation of micro- and nanoplastics (MNPs) which poses major risk for environmental health. Although some studies have investigated the effects of pristine MNPs on reproductive health, the effects of weathered MNPs have been poorly investigated. Here we show in Caenorhabditis elegans that exposure to photoaged polystyrene nanoplastics (PSNP-UV) results in worse reproductive performance than pristine PSNP (i.e., embryonic/larval lethality plus a decrease in the brood size, accompanied by a high number of unfertilized eggs), besides it affects size and locomotion behavior. Those effects were potentially generated by reactive products formed during UV-irradiation, since we found higher levels of reactive oxygen species and increased expression of GST-4 in worms exposed to PSNP-UV. Those results are supported by physical-chemical characterization analyses which indicate significant formation of oxidative degradation products from PSNP under UV-C irradiation. Our study also demonstrates that PSNP accumulate predominantly in the gastrointestinal tract of C. elegans (with no accumulation in the gonads), being completely eliminated at 96 h post-exposure. We complemented the toxicological analysis of PSNP/PSNP-UV by showing that the activation of the stress response via DAF-16 is dependent of the nanoplastics accumulation. Our data suggest that exposure to the wild PSNP, i.e., polystyrene nanoplastics more similar to those actually found in the environment, results in more important reprotoxic effects. This is associated with the presence of degradation products formed during UV-C irradiation and their interaction with biological targets.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Poliestirenos/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Estresse Oxidativo , Proteínas de Caenorhabditis elegans/metabolismo
19.
Reprod Biol ; 24(2): 100877, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461794

RESUMO

Pre- and/or post-natal administrations of di(2-ethylhexyl) phthalate (DEHP) in experimental animals cause alterations in the spermatogenesis. However, the mechanism by which DEHP affects fertility is unknown and could be through alterations in the survival and differentiation of the gonocytes. The aim of the present study was to evaluate the effect of a single administration of DEHP in newborn mice on gonocytic proliferation, differentiation and survival and its long-term effects on seminiferous epithelium and sperm quality. BALB/c mice distributed into Control and DEHP groups were used. Each animal in the DEHP group was given a single dose of 500 mg/Kg at birth. The animals were analyzed at 1, 2, 4, 6, 8, 10 and 70 days postpartum (dpp). Testicular tissues were processed for morphological analysis to determine the different types of gonocytes, differentiation index, seminiferous epithelial alterations, and immunoreactivity to Stra8, Pcna and Vimentin proteins. Long-term evaluation of the seminiferous epithelium and sperm quality were carried out at 70 dpp. The DEHP animal group presented gonocytic degeneration with delayed differentiation, causing a reduction in the population of spermatogonia (Stra8 +) in the cellular proliferation (Pcna+) and disorganization of Vimentin filaments. These events had long-term repercussions on the quality of the seminiferous epithelium and semen. Our study demonstrates that at birth, there is a period that the testes are extremely sensitive to DEHP exposure, which leads to gonocytic degeneration and delay in their differentiation. This situation can have long-term repercussions or permanent effects on the quality of the seminiferous epithelium and sperm parameters.

20.
J Biochem Mol Toxicol ; 38(2): e23651, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348707

RESUMO

Bisphenol S (BPS), a BPA analog and a safer alternative, is utilized in a diverse range of industrial applications, such as making polycarbonate plastics, epoxy resins, thermal receipt papers, and currency bills. Recently, the increased use of BPS in containers and packages for daily life has been interrogated due to its identical chemical structure and probable endocrine-disrupting actions as BPA has. The present study aimed to evaluate the alterations in biochemical indices and antioxidant enzymes as certain indicators of the endocrine-disrupting effect of BPS in Channa striatus, a freshwater fish. BPS-exposed fish species were subjected to three sub-lethal concentrations of BPS (1, 4, and 12 ppm) and observed after an interval of 7 and 21 days. Exposure to BPS caused a reduction in the level of protein in muscle, gonads and the liver due to an impairment of protein synthesis. Levels of cholesterol in the muscle, gonads, and liver of BPS-exposed fish were found to be decreased after treatment, indicating either an inhibition of cholesterol biosynthesis in the liver or reduced absorption of dietary cholesterol. The levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase showed remarkable increases, while the activity of glutathione S-transferase decreased considerably, indicating the antioxidant defense mechanism to counteract the oxidative stress induced by BPS. Moreover, a significant increase was noted in the level of lipid peroxidation products, like malondialdehyde and conjugate diene, which represent biomarkers of oxidative stress. The histoarchitecture changes were also observed in the liver, muscle and gonads of BPS-treated fish species. The present study showed that sub-lethal exposure to BPS significantly influenced the activities of these enzymes and peroxidation byproducts. From this study, it is concluded that BPS-caused toxic effects in fish species lead to an imbalance in the antioxidant defense system. It is clearly indicated that BPS toxicity could lead to susceptible oxidative stress in various tissues and could damage vital organs.


Assuntos
Antioxidantes , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Superóxido Dismutase/metabolismo , Colesterol , Mecanismos de Defesa , Peroxidação de Lipídeos , Compostos Benzidrílicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...